

FRM@China FinancialRiskMeter for China

Ruting Wang Michael Althof Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Professor of Statistics Humboldt-Universität zu Berlin BRC Blockchain Research Center Ivb.wiwi.hu-berlin.de Charles University, WISE XMU, NCTU 玉山學者

Systemic Risk

- □ Tail event (TE) co-movements of Financial Institutions (FI)
- COStress: High risk exposure
- Limitations of risk measurements
- TENET Tail Event NETwork risk, Härdle Wang Yu (2016) J E'trics
- FRM Financial Risk Meter for joint TEs

Risk, Model Risk, Systemic Risk

The financial cycle and the business cycle are not synchronised, implying that risks can emerge especially in the periods of "disconnect" between the two cycles.", <u>Vítor Constâncio, VP</u> <u>ECB, 2015</u>

"Broadly speaking, model risk can be attributed to either an incorrect model or to an incorrect implementation of a model", <u>Buraschi and Corielle (2005)</u>

"I know it when I see it", Justice Potter Stewart (1964)

- □ Tail Behavior
- Ultra High Dimensions
- ☑ Nonlinear in Time and Space (= Network)

Risk Measures

- ☑ VIX: IV based, does not reflect joint TEs
- CoVaR concentrates on a pair of risk factors
- □ CISS, Google trends, SRISK, ...
- □ FRM displays the full picture of TE dependencies
- Firamis.de/FRM financialriskmeter

FRM FinancialRiskMeter

- Quantile Lasso CoVaR based
- Capture tail event co-movements.
- Define interdependencies in a network topology
- Estimate systemic risk and identify risk factors
- Predict recession probabilities

The Chinese Region

- The second biggest economic region
- Shocks in domestic market and global events
- Co-movements between Chinese regions

Contribution

- Less noisy and early trigger risk indicator
- □ FRM extension by exploring feature importance
- □ Risk drivers of TE (short term MP & forward guidance)
- Mainland, Hong Kong and Taiwan's spillover
- Regional tool set for regulators

Outline

- 1. Motivation 🗸
- 2. Genesis
- 3. Methodology
- 4. Results

Financial Risk Meter FRM: Overview

Risk Measures

- ► VaR: tail event probability, single node
- CoVaR (Adrian et al 2016): bivariate tail dependence system
- TENET (Härdle et al 2016): quantile regression on macroeconomic variables, network node
- Financial Risk Meter FRM
 - Systemic risk measure,
 - High-dimensional tail stress into a single real value indicator.
 - Capture all interdependencies in one single number.
 - \blacktriangleright J companies and M macroeconomic risk factors

VaR Value at Risk

Probability measure based

$$P(X_{i,t} \le VaR_{i,t}^{\tau}) \stackrel{def}{=} \tau, \quad \tau \in (0,1)$$

X_{i,t} log return of risk factor (institution) i at t
 VaRs (0.99, 0.01) based on RMA, Delta Normal Method

Q

2-2

Quantiles and Expectiles

 $q^{\tau} = \arg\min_{\theta} \mathsf{E}\left\{\rho_{\tau}(Y-\theta)\right\}$ notion For r.v. Y obtain tail event measure:

asymmetric loss function

$$\rho_{\tau}(u) = |u|^{c} |\tau - \mathbf{I}_{\{u < 0\}}|$$

c = 1 for quantiles c = 2 for expectiles

Quantiles and Expectiles

Check function

Figure: Loss function of expectiles and quantiles for $\tau = 0.5$ (dashed) and $\tau = 0.9$ (solid).

Conditional Value at Risk

□ Adrian and Brunnermeier (2016) introduced CoVaR $P\{X_{j,t} \le CoVaR_{j|i,t}^{\tau} \mid X_{i,t} = VaR^{\tau}(X_{i,t}), M_{t-1}\} \stackrel{def}{=} \tau,$

 \square M_{t-1} vector of macro-related variables

Goldman Sachs (Y), Citigroup (X), Conf Bands, Chao et al (2015)

CoVaR and the magic of joint TEs

CoVaR technique

$$\begin{aligned} X_{i,t} &= \alpha_i + \gamma_i^{\mathsf{T}} M_{t-1} + \varepsilon_{i,t}, \\ X_{j,t} &= \alpha_{j|i} + \beta_{j|i} X_{i,t} + \gamma_{j|i}^{\mathsf{T}} M_{t-1} + \varepsilon_{j,t}. \end{aligned}$$

$$\begin{split} & \searrow \ F_{\varepsilon_{i,t}}^{-1}(\tau \mid M_{t-1}) = 0 \ \text{and} \ F_{\varepsilon_{j,t}}^{-1}(\tau \mid M_{t-1}, X_{i,t}) = 0 \\ & \widehat{VaR}_{i,t}^{\tau} = \widehat{\alpha}_i + \widehat{\gamma}_i^{\mathsf{T}} M_{t-1}, \\ & \widehat{CoVaR}_{j|i,t}^{\tau} = \widehat{\alpha}_{j|i} + \widehat{\beta}_{j|i} \widehat{VaR}_{i,t}^{\tau} + \widehat{\gamma}_{j|i}^{\mathsf{T}} M_{t-1}. \end{aligned}$$

CoVaR: First calculate VaRs, then compute the TE given a stressed risk factor.

Linear Quantile Lasso Regression

$$X_{j,t}^{s} = \alpha_{j,t}^{s} + A_{j,t}^{s\top} \beta_{j}^{s} + \varepsilon_{j,t}^{s}, \qquad (1)$$
$$A_{j,t}^{s\top} \stackrel{def}{=} \left[M_{t-1}^{s}, X_{-j,t}^{s} \right]$$

where:

- □ $X_{-j,t}^s$ log returns of all other assets except $j = \{1, ..., J\}$ at time $t = \{2, ..., J\}$
 - $t = \{2, ..., T\}$
- □ *s* length of moving window
- \square M_{t-1}^s log return of macro prudential variable at time t-1
- Application, J = 50, s = 63

Lasso Quantile Regression

$$\min_{\alpha_{j}^{s},\beta_{j}^{s}} \left\{ n^{-1} \sum_{t=s}^{s+(n-1)} \rho_{\tau} (X_{j,t}^{s} - \alpha_{j}^{s} - A_{j,t}^{s\top} \beta_{j}^{s}) + \lambda_{j}^{s} \parallel \beta_{j}^{s} \parallel_{1} \right\}$$
(2)

• Check function $\rho_{\tau}(u) = |u|^c |\tau - I_{\{u < 0\}}|$ with c = 1, 2

corresponding to quantile, expectile regression

- \square λ creates size of "active set", i.e. spillover
- \square λ is sensitive to residual size, i.e. TE size
- \square λ reacts to singularity issues, i.e. joint TEs

3-2

λ Role in Linear Lasso Regression

- ☑ Osborne et al. (2000)
- Dependence, time-varying, institution-specific
- Size of model coefficients depends on,

$$\lambda = \frac{\left\{Y - X\beta(\lambda)\right\}^{\top} X\beta(\lambda)}{\left\|\beta\right\|_{1}}$$
Coeff's depend on λ

 \square λ depends on:

Residual size

- Condition of design matrix
- Active set

change of TEs in terms of risk driver influence!

rish Drive ufficence.

λ Role in Linear Quantile Regression

 \square λ size of estimated LQR coefficients Li Y, Zhu JL (2008)

$$(\alpha - \gamma)^{\top} = \tau \operatorname{I}_{\{Y - X\beta(\lambda) > 0\}} + (\tau - 1) \operatorname{I}_{\{Y - X\beta(\lambda) < 0\}}$$

Average penalty: indicator for tail risk,

$$FRM^t \stackrel{def}{=} J^{-1} \sum_{j=1}^J \lambda_j^t$$

□ The FRM time series is one index for joint TEs!

λ Selection

Generalized approximate cross-validation (GACV)

20200101

min GACV(
$$\lambda_j^s$$
) = min $\frac{\sum_{t=s}^{s+(n-1)} \rho_t(X_{j,t}^s - \alpha_j^s - A_{j,t}^{s,T} \beta_j^s)}{n - df}$ (3)
where: df dimensionality of fitted model
 λ as function of j, t
 D Distribution of λ^s
 D ID the TE drivers

20200201

20200301

20200401

20200501

3-6

TE transfer direction: degree centralization

Definition

$$D = \sum_{j=1}^{N} \sum_{i=1}^{N} \mathbf{1}(\beta_{j,i}^{k})$$

where

$$\mathbf{1}(\beta_{j,i}^{k}) = \begin{cases} 1 & \text{if } \beta_{j,i}^{k} \neq 0\\ 0 & \text{if } \beta_{j,i}^{k} = 0 \end{cases}$$

 \Box In-degree of FI *j*:

$$Ind_j = \sum_{i=1}^N \mathbf{1}(\beta_{j,i}^k)$$

 \Box Out-degree of Fl *i*:

$$Outd_i = \sum_{j=1}^N \mathbf{1}(\beta_{j,i}^k)$$

Steps

- Obtain company list of all historically active index members
- Download daily prices and market cap in same currency (USD)
- □ Sort market cap decreasingly (to select J biggest companies)
- Calculate stock and macro variable returns
- On every trading day
 - Select J biggest risk driver's returns over s trading days
 - Attach returns of macroeconomic risk factors
 - Calculate λ for all companies
 - Calculate average λ , etc.
 - Store active set

LQ Lasso Regression

Macroeconomic variable selection

- ☑ Adrian J, Brunnermeier M (2016), but for Chinese Region
- Common exposure
- Macroeconomic risk factors
 - ► 3M yield > 2yr Chinese treasury yield rate
 - ► Yield curve slope ➤ Chinese 10-2yr spread
 - FXI > CBOE Top 50 China ETF
 - VXFXI > Implied Volatility traded on FXI

The function of Shapley (from RM)

Can we pin down why a certain model made a particular prediction?

Then the model can be defined as a **black box model**.

Then we know which features were of importance.

Possible solution: Post-hoc explanation methods

Macro > FRM: non-linear

 \square λ size of estimated LQR coefficients Li Y, Zhu JL (2008)

$$\lambda = \frac{\left(\alpha - \gamma\right)^{\mathsf{T}} X \beta\left(\lambda\right)}{\left\|\beta\right\|_{1}}$$

$$\left(\alpha - \gamma\right)^{\top} = \tau \operatorname{I}_{\{Y - X\beta(\lambda) > 0\}} + (\tau - 1) \operatorname{I}_{\{Y - X\beta(\lambda) < 0\}}$$

Average penalty: indicator for tail risk

$$FRM^t \stackrel{def}{=} J^{-1} \sum_{j=1}^J \lambda_j^t$$

Basic idea (from RM)

Calculation of the Shapley values

$$\phi_j = \sum_{S \subseteq F \setminus j} \frac{|S|!(|F| - |S| - 1)!}{|F|!} \{ P(S \cup j) - P(S) \}$$

φ_j is Shapley value for player *j F* is a set containing all players of the game
 S is a coalition of players w/o player *j P*(*S*) is payoff for this coalition

Calculation Process: eg FXI.US

□ Case1:

$$\phi_a^1 = \frac{0!(4-0-1)!}{4!} \left\{ \hat{f}(S' \cup x_a) - \hat{f}(S') \right\}$$

 x_a : FXI.US x_b : VXFXI x_c : CN2YR x_d : CN210Slope \hat{f} : FRM $S' = \{49FIs'stockreturn\}$

• Case2:

$$\phi_a^2 = \frac{1!(4-1-1)!}{4!} \left\{ \hat{f}(S' \cup x_a \cup x_b) - \hat{f}(S' \cup x_b) + \hat{f}(S' \cup x_a \cup x_c) - \hat{f}(S' \cup x_c) + \hat{f}(S' \cup x_a \cup x_d) - \hat{f}(S' \cup x_d) \right\}$$

☑ Case3:

$$\phi_a^3 = \frac{2!(4-2-1)!}{4!} \left\{ \hat{f}(S' \cup x_a \cup x_b \cup x_c) - \hat{f}(S' \cup x_b \cup x_c) + \hat{f}(S' \cup x_a \cup x_b \cup x_d) - \hat{f}(S' \cup x_b \cup x_d) + \hat{f}(S' \cup x_a \cup x_c \cup x_d) - \hat{f}(S' \cup x_c \cup x_d) + \hat{f}(S' \cup x_b \cup x_d) + \hat{f}(S' \cup x_d \cup x_d$$

Calculation Process: eg FXI.US

⊡ Case4:

FRM@China

$$\phi_a^4 = \frac{3!(4-3-1)!}{4!} \left\{ \hat{f}(S' \cup x_a \cup x_b \cup x_c \cup x_d) - \hat{f}(S' \cup x_b \cup x_c \cup x_d) \right\}$$

■ Shapley value of "a":

$$\phi_a = \phi_a^1 + \phi_a^2 + \phi_a^3 + \phi_a^4$$

FRM@China

FRM: earlier and less noise QFRM_China

2019-04-17 to 2021-02-10, CBOE FIX Volatility Index, FRM@China

FRM: earlier and less noise QFRM_China

 2006-08-01 to 2021-02-10, VIX Index, CBOE FIX Volatility Index, FRM@China

Visualising the Trend: FRM the Boxplot QFRM_China

Visualising the Trend: FRM, In-degree, Out-degree QFRM_China

FRM and In-degree

FRM and Out-degree

Degree $\downarrow >$ FRM \uparrow

Dynamic risk transmission

The most risky sector

Bank (before covid-19) > Security (after covid-19)

□ CITIC, the most risky FI after Covid-19

Spill-in effects
Spill-out effects

TE Interaction between mainland, Taiwan and Hong Kong

Visualising the Matrix: CITIC 600030 CH

Visualising the Matrix: FUBON FINANCIAL HOLDING CO (2881 TT CH)

Visualising the Matrix: HSBC HOLDINGS PLC(5 HK CH)

Results

HRP Cluster of Fls on 2020-02-03 QFRM_China

Results

HRP Cluster of Fls on 2020-04-29 QFRM_China

Adjacency Matrix of Fls

QFRM_China

Adjacency Matrix on 2021-02-03

		H CHINAM	K AIA	B HSBC	H CHINPACINS	H CHIMIN	K HANSEN	H CSFCO	K CRHZCH	H CHEVBK	H HTSC	K HENLND	H GTJA	H CHMERC	K LINREI	H HAISEC	A CATFIN	H SYWGSE	A FUBON	A MEGA	H GFSECU	FXI US EQUITY	VXFXI INDEX	CN2YR	CN210SLOPE	TED	Rea lEsta teDiff	Spread_InduBond_Less1Y	Spread_InduBond_1T3Y	Spread_InduBond_3T5Y	Spread_InduBond_5T10Y	Spread_InduBond_Over10Y
		Ċ	Ē	5	Ċ	Ċ	Î	Ċ	aH	Ċ	Ċ	a H	Ċ	aCt	taH	t t	Т¢	Ú Đ	1	1 1	Ċ											
	20200429, tau=0.05	Banks	Insurance	Banks	Insurance	Banks	Banks	Capital Marke	Real Estate M	Banks	Capital Marke	Real Estate M	Capital Marke	Real Estate M	Equity Real Es	Capital Marke	Insurance	Capital Marke	Insurance	Banks	Capital Marke											
CITICS	CH Capital Markets		0.00					0.08		0.02	0.16		0.37					0.27			0.11								0.03			
CITLTD	HK Industrial Conglomerates			0.17		0.03	0.22		0.33			0.05	0.00	0.05	0.05	0.00		0.19	-0.11								-0.16					
FUBON	TA Insurance	0.05	0.16		0.01			-0.05									0.34			0.29		0.10				-0.11	0.06					

Adjacency Matrix on 2021-04-29

4-11

Shapley value of macro features QFRM_China

Shapley value of macro features QFRM_China

Correlation between Macro Variables

Reference

Acharya VV, Pedersen LH, Philippon T Richardson M (2017) Measuring systemic risk, The review of financial studies, 30(1): 2–47

Adrian T, Brunnermeier, MK (2016) CoVaR, The American Economic Review, 106(7): 1705. URL:<u>https://doi.org/10.1257/aer.20120555</u>

Allen F, Gale D (2004) Financial intermediaries and markets, Econometrica, 72(4): 1023–1061. URL: <u>https://doi.org/10.1111/j.1468-0262.2004.00525.x</u>

Bagliano FC, Morana C (2012) The great recession: Us dynamics and spillovers to the world economy, Journal of Banking Finance, 36(1): 1–13. URL: <u>https://doi.org/10.1016/j.jbankfin.2011.06.002</u>

Battiston S, Gatti DD, Gallegati M, Greenwald B, Stiglitz JE (2012) Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk, Journal of economic dynamics and control, 36(8): 1121–1141.

URL:https://doi.org/10.1016/j.jedc.2012.04.001

Ben Amor S, Althof M, Härdle WK (2021) FRM Financial Risk Meter for Emerging Markets, Research in International Business and Finance (Accepted). URL: <u>http://dx.doi.org/10.2139/ssrn.3785488</u>

Bernanke BS, Kuttner KN (2005) What explains the stock market's reaction to federal reserve policy?, The Journal of finance, 60(3): 1221–1257. URL: https://doi.org/10.1111/j.1540-6261.2005.00760.x

Reference

Bluhm M, Krahnen J (2014) Systemic risk in an interconnected banking system with endogenous asset markets, Journal of Financial Stability, 13(C): 75–94. URL:<u>https://doi.org/10.1016/j.jfs.2014.04.002</u>

Brownlees C, Engle RF (2016) SRISK: A Conditional Capital Shortfall Measure of Systemic Risk, The Review of Financial Studies, 30(1): 48–79. URL: <u>https://doi.org/10.1093/rfs/hhw060</u>

Buraschi A, Corielle F (2005) Risk management of time-inconsistency: Model updating and recalibration of no-arbitrage models. J Banking and Finance 29: 2883–907

Cai J, Eidam F, Saunders A, Steffen, S (2018) Syndication, interconnectedness, and systemic risk, Journal of Financial Stability, 34: 105–120. URL: <u>https://doi.org/10.1016/j.jfs.2017.12.005</u>

Cheung YL, Mak SC (1992) The international transmission of stock market fluctuation between the developed markets and the Asian-Pacific markets, Applied Financial Economics (1): 43–47. URL: <u>https://doi.org/10.1080/758527545</u>

Eun CS and Shim S (1989) International transmission of stock market movements, Journal of financial and quantitative Analysis, pp. 241–256. URL: <u>https://doi.org/10.2307/2330774</u>

Reference

Fang L, Bessler DA (2018) Is it China that leads the Asian stock market contagion in 2015?, Applied Economics Letters, 25(11): 752–757.

URL: https://doi.org/10.1080/13504851.2017.1363854

Härdle WK, Simar L (2019) Applied Multivariate Statistical Analysis, 5 edn, Springer, pp. 363–393 & 431–442.

URL: https://doi.org/10.1007/978-3-030-26006-4

Härdle WK, Wang W, Yu L (2016) TENET: Tail-Event Driven NETwork Risk, Journal of Econometrics, 192(2): 499–513. URL: <u>https://doi.org/10.1016/j.jeconom.2016.02.013</u>

Mihoci A, Althof M, Chen CYH, Härdle WK (2020) FRM Financial Risk Meter, The Econometrics of Networks (Advances in Econometrics), Vol. 42, Emerald Publishing Limited. URL: <u>https://doi.org/10.1108/S0731-90532020000042016</u>

Ren R, Althof M, Härdle WK (2020) Tail risk network effects in the cryptocurrency market during the COVID-19 crisis, Available at SSRN 3753421 URL: <u>http://dx.doi.org/10.2139/ssrn.3753421</u>

Ren R, Lu M, Li Y, Härdle WK (2021). Financial Risk Meter based on expectiles, Journal of Multivariate Analysis (Submitted)

Yu L, Härdle WK, Borke L, Benschop T (2019). An Al Approach to measuring financial risk, Singapore Economic Review, (2019): 1-21. URL: <u>https://doi.org/10.1142/S0217590819500668</u>

FRM@China FinancialRiskMeter for China

Ruting Wang Michael Althof Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Professor of Statistics Humboldt-Universität zu Berlin BRC Blockchain Research Center Ivb.wiwi.hu-berlin.de

Charles University, WISE XMU, NCTU 玉山學者

